TEMPERATURE DISTRIBUTION IN A POROUS
MATRIX — LIQUID SYSTEM '
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An approximate solution of the heat balance equations for the liquid and matrix in a porous
mafrix—liquid system is given. A comparison with the exact solution shows good agree-
ment of the temperature profiles,

The solution of several practical problems recjuires a knowledge of thé heat transfer coefficient fér
a flow of liquid through a packed bed. Such a need arises, in particular, in the planning of a number of
electrical engineering installations,

The analysis of the complex problem of heat transfer is usually simplified by assuming that the
thermophysical parameters are constant. The initial equations for analysis of heat transfer in a porous
matrix and liquid are the heat balance equations, Radiant heat transfer is usually neglected in the investi-
gations owing to the smallness of its contribution to the total transmitted heat flux in all the particular in-
vestigated conditions,

If there is no phase transition in the porous matrix—liquid system the heat balance equation for the
porous matrix, which has porosity £ and in which heat energy is released uniformly throughout its volume,
while the thermophysical parameters are constant and the liquid moves in one direction x, has the form
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The heat balance equation for a liquid when the thermophysical parameters and flow velocity are
constant has the form
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The heat transfer coefficient is referred to unit volume of the porous matrix, which is common prac-

tice in several studies of the heat transfer associated with a flow through a porous matrix,

An analysis of this system was given by Green et al. [1] for boundary conditions of the first kind.
These authors, unfortunately, could not obtain an analytical solution of system (1), (2). A numerical solu-
tion was obtained for several values of the system parameters but, as the authors themselves noted, the
obtained solutions were rather complex for use in the evaluation of experimental results,

The above system of equations excluding the second term in the first equation was solved for the
following boundary conditions:
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Using the Laplace transformation we ultimately obtained very unwieldy expressions for and t,,
which we do not give here and which are rather inconvenient for practical use,

Since the heat transfer coefficient in our formulation of the problem is independent of x, and taking
into account the prescribed houndary conditions, we introduce an approximate replacement of the tempera-
ture head by the product (t{ —ty) (1—xl‘1)exp [(— s/ pchzlzv)x]. We will assess the validity of this substitu~
tion later. The initial equations (1) and (2) then assume the form
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4{ Fig. 1. Temperature distribution in porous
" matrix—liquid system obtained from exact
and approximate solutions: 1) temperature of
porous matrix from exact solution; 1') tem-
perature of liquid from exact solution; 2)
temperature of porous matrix from approxi-
mate solution; 2') temperature of liquid from
approximate solution (t, °C, x, cm),

X
at . a aztl X ;'2 ) !
(I—e)pey, -071 =(—eok — —ak (I—T)exp {.— o x| Q @)
Ot . 0%, x Ry ot
2, —2 —ak|l— =) exp [— ——2—x)—p,0 —2-, S
€PyCps 5 By =2 % ( ] ) p ( . ) 0,€ ¥ = ()

where k = 1;;—t0 is determined from the boundary conditions.

The boundary conditions are the same, i.e., they are determined by system (3). The solution scheme
for system (4), (5) is also the same. Applying Laplace transformations to (4), (5) we obtain
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These transformations reduce the solution of the system of equations to the solution of a second-
order equation. Since its solution presents no particular difficulties, and to avoid burdening our account
with superfluous mathematical calculations, we give only the final expression for the temperatures
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and the liquid temperature is given by the expression

Lv, =t (x, ) —R (l—— li) exp (— ax:vl?). (10)
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To assess the degree of approximation introduced by the assumption of an exponential variation of
the difference in temperatures of the porous matrix and liguid with the coordinate we calculated the tem-
perature profiles of the porous matrix and liquid from the exact system (1), (2) and the approximate system
{9}, (10) for the same conditions (Fig. 1).

The initial data were as follows: heat transfer medium — water, porous matrix — sintered aluminum,
duration of experiment — 1000 sec, liquid temperature at entrance — 10°C, temperature of porous matrix
— 20°C, liquid temperature at exit — 100°C, bulk heat release — 0,08 J/ cm? - sec, The maximum differ-
ence in the temperatures calculated from the exact and approximate solutions was 49,

From this we can conclude that the approximate solution (9), (10), which is simpler than the exact
solution, can be recommended for evaluation of temperatures in a porous matrix—-liquid system.

NOTATION
5 is the porosity;
A is the thermal conductivity;
p is the density;
Cp is the heat capacity;
t is the temperature;
T is the time;
X is the coordinate;
Oy is the heat transfer coefficient per unit volume of porous matrix;
Qy is the heat flux per unit volume of porous matrix;
v is the liguid filtration velocity;
I is the thickness of porous matrix in direction of coordinate;
@' = ay/prep(l-e);
a is the thermal diffusivity;

‘ Al = 7\1/P10p1'

Supscripts

1 denotes porous matrix;
2 denotes liquid.
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